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ABSTRACT 

Bridges are often built in locations susceptible to multiple extreme hazards.  Meeting some or all of these constraints 
drives the development of innovative multi-hazard design concepts.  This paper presents the results of research 
conducted to develop and experimentally validate such multi-hazard bridge pier concepts.  The first concept is a 
pier-bent made of concrete filled steel tube columns.  For comparison, the paper summarizes the results of other 
blast tests on ductile reinforced concrete (RC) bridge piers and non-ductile RC bridge piers retrofitted with steel 
jackets, both designed to be ductile from a seismic design perspective.  LS-DYNA finite element results are 
presented to replicate and validate test results for the concrete filled columns.  The second concept is a multi-hazard 
resistant steel plate shear wall (SPSW) box pier developed to provide satisfactory performance for earthquakes, 
vehicle collisions, tsunamis or storm surges, and blasts.  All analyses show that the proposed concepts have superior 
multi-hazard performance. 

INTRODUCTION 

The emergence of new design objectives in bridge engineering always provides new opportunities to re-examine 
past design practices and explore the potential benefits of various alternative design solutions.  Considered in this 
paper is the emerging topic of multi-hazard design, as it relates to bridges.  Bridges are often built in locations 
susceptible to multiple extreme hazards (earthquakes, vehicle collisions, tsunamis or storm surges, and blasts as a 
minimum for some locations).  Meeting some or all of these constraints drives the development of innovative multi-
hazard design concepts. 

Favorable features for design against one hazard may inevitably be unfavorable for other hazards, however, thus 
lending mismatched design solutions to the multi-hazard dilemma. Such conflicting design aspects are well 
illustrated elsewhere [1]. To make a design that is beneficial for one hazard while at the same time avoiding the 
possibility of making the structure vulnerable to other hazards, a system’s approach to design must be undertaken.  
Such an approach necessitates designers to be knowledgeable of multiple hazards, and to consider the numerous and 
sometimes contradicting demands from the multiple hazards at the onset of the design process such as to avoid 
foreseeable mismatched design solutions. Such an approach should provide for a single cost single concept solution 
(not a combination of multiple design schemes), which aims to eliminate the potential incremental cost per hazard 
design. 

This paper presents the results of a research project conducted to develop and experimentally validate such a multi-
hazard bridge pier concept, i.e., a bridge pier system capable of providing an adequate level of protection against 
collapse under both seismic and blast loading, and whose structural, construction, and cost characteristics are not 
significantly different from those of the pier systems currently found in typical highway bridges in the United States. 
The proposed pier system is a pier-bent where concrete filled steel tube columns frame into beams made up of C-
shape steel sections embedded in the concrete foundation and pier cap.  For comparison, the results of another blast 
test series are presented to examine the blast resistance of ductile reinforced concrete (RC) bridge piers and non-
ductile RC bridge piers retrofitted with steel jackets that are designed according to current seismic knowledge and 
that are currently applied in typical highway bridge designs. 

Finite element studies were also conducted on the concrete filled columns to replicate the transient dynamic 
behavior observed during the blast tests previously described. Because of the complexity of the problem, the explicit 
solver in LS-DYNA which is built around the central difference scheme was adopted to solve the equation of motion 



that describes the problem. This solver is well suited to situations involving high impulsive loading, high strain-rate, 
contact and material non-linearities [2], which are all present in the FEM studies of the columns. 

In addition, the development and design of a conceptual multi-hazard resistant steel plate shear wall (SPSW) box 
pier concept is discussed.  The system development and design considered each of the four aforementioned hazards 
by use of simplified analyses for design, and the use of advanced nonlinear finite element analyses to confirm that 
the proposed SPSW box system provides adequate ductile performance and strength for each of the hazards. 

BLAST RESISTANCE OF MULTI-HAZARD AND SEISMICALLY RESISTANT BRIDGE PIERS 

A review of several different structural configurations of bridge piers and potential bridge bent systems was 
conducted to identify systems deemed most appropriate in meeting the objectives of multi-hazard design.  It was 
found that concrete-filled steel shapes can be used as multi-hazard bridge piers capable of providing an adequate 
level of protection against collapse under both seismic and blast loading, and with member dimensions not very 
different from those currently found in typical highway bridges. These CFST columns are smaller than the typical 
914 mm (3’) diameter reinforced concrete pier column, but expected to perform significantly better under blast 
loads. This type of structural member was deemed likely to be accepted in practice (and incidentally is helpful in 
fulfilling the objective of accelerated construction).  This structural configuration was therefore selected for 
experimental verification of its blast resistance (seismic performance of such columns had already been 
demonstrated by researchers, such as Bruneau and Marson [3]). 

A series of blast experiments on 1/4 scale multi-hazard bridge piers was performed [4] [5].  Piers were concrete-
filled steel tube columns (CFST columns) with different diameters [D = 102 mm (4”), 127 mm (5”) and 152 mm 
(6”)], connected to a steel beam embedded in the cap-beam and to a foundation beam.  The bent frame was braced in 
what would correspond to the bridge longitudinal direction at the level of the cap-beams.  A reaction frame was built 
for this purpose.  Blast tests showed that CFST columns of bridge pier specimens exhibited a satisfactory ductile 
behavior under blast loading as shown in Figure 1a.  The foundation connection concept applied in this experiment 
allowed to develop the composite strength of CFST column under blast loading. 

Note that for comparison, another blast test series was conducted to examine the blast resistance of ductile 
reinforced concrete (RC) bridge piers [D = 203 mm (8”)] and non-ductile RC bridge piers retrofitted with steel 
jackets [D = 213 mm (8 3/8”)] that are designed according to current seismic knowledge and that are currently 
applied in typical highway bridge designs.  Out of that test series, standard RC and steel jacketed RC columns were 
not found to exhibit a ductile behavior under blast loading, failing in direct shear at their base rather than by flexural 
yielding, as was the case with CFST columns (see a test result of the RC column in Figure 1b).  Furthermore, this 
non-ductile failure occurred for a much smaller blast pressures than used for the comparable CFST [6].  Reinforced 
concrete details by current seismic codes and steel jacketing, known to be effective to provide satisfactory seismic 
performance, were thus shown to be ineffective for the blast loading cases considered. 

 
(a)                                                                              (b) 

Figure 1. (a) CFST column (D = 127 mm) after the test; (b) RC column after the test 
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Figure 4.  Progression of multi-hazard resistant SPSW bridge pier concept 

Keller & Bruneau [8] describe short-comings of concepts (a) & (b) by discussing specific aspects of these concepts 
that fail to adequately coalesce favorable design features for each hazard into a single multi-hazard solution.  This, 
in addition to the limited freedom of design for retrofits and the potential difficulties of anchoring SPSW assemblies 
to existing bridge piers, shifted the focus to concepts for implementation into new bridges where the pier is 
completely composed of steel in the form of a SPSW box assembly (c - e) aimed at providing significant redundancy 
and comparable strength in a bridge’s transverse and longitudinal direction.  Note from the sections in these figures 
(B-B, C-C, and D-D) that the vertical boundary elements (VBEs) are hollow circular tubes.  The use of tubes was 
preferred over the use of wide flange shapes, as is typical with SPSWs (e.g. Section A-A in Figure 4a) due to their 
cross-sectional symmetry about any axis.  Similarly, the horizontal boundary elements (HBEs) are hollow circular 
tubes.  Note that the elevations in Figure 4 show the pier without plates attached, thus revealing the boundary frame, 
when in fact the pier’s boundary frame is wrapped with plates that are assumed welded to the HBEs and VBEs 
allowing the inside to remain dry. 

After due consideration of each concept’s benefits, the four-column box pier concept was retained as worthy of 
further development.  In addition to its seismic resistance in each direction, which can be adjusted by simply 
changing plate thickness, the plates are anticipated to be sacrificial for the other hazards.  This is an important point 
considering the premise behind multi-hazard design is to be conscious of design solutions with favorable features for 
one hazard that may be detrimental for other hazards.  The plates, in particular, are an important feature to any 
SPSW system for seismic resistance, but at the same time provide surfaces that collect pressure loads from other 
hazards (e.g. tsunamis and blast).  This undesirable design feature provided for seismic resistance, however, is not 
destructive for the other hazards if the plates are indeed sacrificial without consequence to the boundary frame. 

The section in Figure 4e and the rendering in Figure 5 illustrate the final concept that was developed in this research 
where the pier is attached to a pier cap that is integral with the bridge superstructure, which was found to be 
advantageous.  Note that the three-span steel plate girder prototype bridge was adapted from a seismic design 
example developed for the Federal Highway Administration [9].  Also, the pier assembly was made reasonably 
narrow in the longitudinal direction to with the intent of reducing the plate surface area subject to wave loads arising 
from surging water transverse to the bridge’s deck. 
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very conservatively considered the pier to be fully submerged (Figure 7).  It was found that (even for the fourth load 
case) while the plates did yield and act as sacrificial elements for this hazard, the boundary frame was observed to 
remain stable and not develop any plastic hinges following each finite element analysis, per conceptual intent at the 
onset of design. 

BLAST 

In initial design, the plates and VBEs were assessed separately in a decoupled analysis being subject to a blast load 
having a peak reflective pressure of 29.2 MPa (4228 psi) and a reflected impulse of 9.7 MPa-msec (1407 psi-msec).  
Design considered this load to act uniformly over the bottom plates and the bottom (up to the first HBEs) of the 
VBEs; these elements would have the least standoff to an explosion occurring at the base of the pier and would 
therefore be the most severely loaded. 

Simplified analysis revealed that the plates would likely offer little resistance against the threat considered and 
would thus be sacrificial assuming the boundary frame remained stable.  Accordingly, the VBEs of the system were 
assessed to validate this assumption. It was found that the VBEs would be sufficiently strong to resist the loads 
imposed by simultaneous yielding of attached plates.  Likewise, it was found through a separate SDOF flexural 
analysis that the VBEs would also likely remain elastic if subject to the design blast loads acting over their own 
surface. 

Nonlinear static analyses were also conducted in an effort to uncover unanticipated behavior when the pier is locally 
subject to larger pressures loads, and in a manner that simulated the likely failure sequence of pier elements, the 
plates being assumed to fail first.  Of primary concern was how the VBEs would behave under large compressive 
forces, so the finite element analysis considered a uniform pressure loading over the bottom quarter of one of the 
VBEs (Figure 7).  Ultimately, this study uncovered the potential need to locally reinforce the cross-sections of any 
hollow structural shape, and that the VBEs could undergo significant flexural deformations without apparent 
consequence to the pier’s global behavior.  As such, a revised and final multi-hazard concept suggests the use of 
concrete-filled steel tubes instead of hollow ones.  The design concept remains identical otherwise. 
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CONCLUSION 

Two innovative bridge bent concepts have been proposed to meet the objectives of multi-hazard design, namely: (i) 
a pier-bent made of concrete filled steel tube columns intended to resist blasts and earthquakes, and; (ii) a multi-
hazard resistant steel plate shear wall box pier developed to provide satisfactory performance for earthquakes, 
vehicle collisions, tsunamis or storm surges, and blasts.  Experiments and finite element analyses conducted to 
validate and verify these concepts demonstrated their superior multi-hazard performance, particularly (in some 
instances) compared to piers only designed to resist earthquakes.  These results also support the benefits of 
approaching multi-hazard design in a holistic way during the conceptual design stage. 
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